Am 14. Dezember 1900 stellte Max Planck in Berlin die Idee der Quantisierung der elektromagnetischen Strahlung der Fachwelt vor. Dieser Tag gilt heute unter Physikern als Geburtsstunde der Quantentheorie. Dieser Artikel gibt eine kurze Einführung in Plancks Entdeckung und ihre Bedeutung, die noch heute ungebrochen ist. Darüber hinaus gehe ich auf Plancks Beziehungen zu Kiel und Schleswig-Holstein ein.1Dieser Artikel basiert auf Vorträgen für die Öffentlichkeit, die ich seit 2008 in Schleswig-Holstein, insbesondere im Rahmen der Schleswig-Holsteinischen Universitätsgesellschaft, gehalten habe. Viele Abbildungen sind dem Vortrag entnommen.

Die mysteriöse Quantenwelt
Im Mikrokosmos ist alles anders. Elektronen können gleichzeitig Teilchen und Welle sein. Außerdem können sie gleichzeitig an verschiedenen Orten im Raum sein. Diese und ähnliche Behauptungen finden sich häufig in den Medien und dienen als Beleg dafür, wie „mysteriös‘‘ und unverständlich es im Mikrokosmos zugeht. Aber stimmt das überhaupt? Ist das Verhalten von Elektronen und anderen Elementarteilchen wirklich so rätselhaft?
Nein, das ist es nicht. Das Verhalten der Materie im Mikrokosmos wurde in den letzten 100 Jahren sehr genau untersucht und durch zahllose Experimente präzise aufgeklärt. Die Experimente werden dabei durch die Theorie der Mikrowelt – die Quantenmechanik – aufs Genaueste reproduziert. Umgekehrt hat die Quantenmechanik eine Vielzahl von Vorhersagen gemacht, die erst (z. T. viel) später experimentell verifiziert werden konnten. Dazu gehören die Antimaterie, das Higgs-Boson oder die Bose-Einstein-Kondensation.
Abbildung 1 zeigt das Verhalten eines Elektrons, wenn es auf ein undurchdringliches Hindernis mit Abmessungen im Nanometerbereich (ein Millionstel Meter, also 1 nm = 0.000,000,001 Meter) trifft. Das Elektron fällt von oben ein und wird teilweise vom Hindernis reflektiert – dabei interferiert es mit sich selbst – und teilweise propagiert es vorwärts durch Lücken im Hindernis. Das Zeitverhalten dieses Vorganges lässt sich mit Hilfe der Schrödingergleichung genau berechnen, das zugehörige Video (Abbildung 1 zeigt einen Schnappschuss daraus) ist hier zu finden: https://vimeo.com/416046798/d996570b9e.
Während die mathematische Beschreibung der Quantenphänomene (z. B. durch die Schrödingergleichung oder die Dirac-Gleichung) außerordentlich erfolgreich ist, erweist sich die Interpretation der Ergebnisse häufig als schwierig. Das mathematisch vorhergesagte Verhalten – wie etwa in Abbildung 1 – widerspricht unserer Alltagserfahrung und Intuition. Die wichtigsten Schlussfolgerungen über die Quantenwelt aus diesem Beispiel sind:
- Zum einen kann sich das Elektron im Raum ausdehnen, auseinander fließen und Hindernisse umgehen.
- Zum anderen muss man das in der Abbildung gezeigte Verhalten als eine statistische Mittelung über sehr viele wiederholte Experimente betrachten, bei denen das Elektron jedes mal einen anderen Weg geht, der nicht vorhersagbar ist.
Quantenphysik heute: Goldgrube für die Forschung und Grundlage der Nanotechnologie
Am 4. Oktober 2022 wurde der Nobelpreis für Physik verliehen – für Experimente auf dem Gebiet der Quantenverschränkung und Quanteninformation. Wie so oft in den letzten Jahren wurden Arbeiten auf dem Gebiet der Quantenphysik gewürdigt, seit Plancks Entdeckung betraf das die Mehrzahl der Physik-Nobelpreise. Bemerkenswert ist, dass es sich dabei nicht nur um Arbeiten auf einem kleinen Teilgebiet der Fachwissenschaft handelt.
Im Gegenteil, es sind Forschungsergebnisse in einer Vielzahl von Gebieten – von der Festkörperphysik, zur Atomphysik, Nanotechnologie, Elementarteilchenphysik oder Kosmologie. Aber auch viele Entdeckungen in der Chemie beruhen auf der Quantenmechanik, die damit heute zur Grundlage der modernen Naturwissenschaften geworden ist.
Angesichts der langen Zeit, die seit Plancks Entdeckung vergangen ist, ist es nicht alltäglich, dass daraus noch immer neue Entdeckungen und praktische Anwendungen entstehen. Und tatsächlich ist die Quantentheorie nicht nur für die Grundlagenforschung wichtig. Nein, viele praktische Anwendungen und technische Geräte, die längst unseren Alltag bestimmen, sind daraus entstanden. Neben elektronischen Geräten wie Computer und Smartphone zählen dazu auch der Laser und alle elektrischen Geräte, in denen mittels Stromfluss durch Elektronen elektrische Arbeit verrichtet wird.
Natürlich war weder diese Umwälzung der Wissenschaft noch die Revolution auf dem Gebiet der Technik zur Zeit, als Planck sich mit Physik zu beschäftigen begann, in irgendeiner Weise zu erwarten gewesen. Im Gegenteil, Ende des 19. Jahrhunderts hielten die meisten Wissenschaftler die Physik für weitestgehend abgeschlossen. Es ist daher von besonderem Interesse, sich die damalige Zeit und das Umfeld, in dem Planck seine Forschungen betrieb, etwas genauer anzuschauen.
„Theoretische Physik nähere sich der Vollendung, die etwa die Geometrie seit Jahrhunderten erreicht hat.“
„Wohl gäbe es vielleicht in einem oder anderen Winkel noch ein Stäubchen oder Bläschen zu prüfen und einzuordnen, aber das System als Ganzes stehe ziemlich gesichert da.“
„Ich hege nicht den Wunsch, Neuland zu entdecken, sondern lediglich, die bereits bestehenden Fundamente der physikalischen Wissenschaft zu verstehen, vielleicht auch zu vertiefen.“
Abb. 2: Zitate aus Plancks Erinnerungen über die Antworten seines Münchner Physikprofessors auf Plancks Frage, womit sich ein junger Wissenschaftler wie er beschäftigen solle. Die Auskunft seines Professors war alles andere als ermutigend. Dennoch blieb Planck seinem Wunsch, sich mit Theoretischer Physik zu beschäftigen, treu, wie das untere Zitat verdeutlicht. Naturwiss. 13, 52-59 (1925).
Max Plancks Weg zur Physik
Max Planck wurde am 23. April 1858 in Kiel geboren. Sein Geburtshaus in der Küterstraße 17 existiert nicht mehr. An seiner Stelle steht das Gebäude der ehemaligen HSH-Nordbank. Seine Eltern waren der Professor der Rechtswissenschaften Johannes Julius Wilhelm von Planck (1817 – 1900) und dessen zweite Ehefrau Emma, geborene Patzig (1821 – 1914). Planck hatte vier Geschwister. In Kiel besuchte der junge Max die Gelehrtenschule, allerdings nur bis zum Alter von 9 Jahren. Als sein Vater einen Ruf an die Münchner Universität erhielt, siedelte die Familie dorthin um. Die prägenden Einflüsse erhielt Planck also in München, und er schätzte auch die intellektuelle und künstlerische Atmosphäre der Stadt, wie auch die nahe gelegenen Alpen, in denen er Zeit seines Lebens gern Bergtouren unternahm.
In der Schule schienen Plancks Stärken im musischen und philologischen Bereich zu liegen. Im Sommer 1874 legte er ein glänzendes Abitur ab und schwankte lange bei der Wahl des Studienfaches. Er entschied sich schließlich für die Physik und begann ein Studium in München. Dort begeisterte er sich vor allem für Theoretische Physik – ein Gebiet, das allerdings als nicht sehr vielversprechend angesehen wurde. Abbildung 2 auf der vorangegangenen Seite zeigt die Auskunft, die er von seinem Münchner Hochschul-Professor Philipp von Jolly erhielt: Die Theoretische Physik sei abgeschlossen und er solle besser die Finger davon lassen. Planck ließ sich jedoch nicht entmutigen und setzte sich das bescheidene Ziel, „die … Fundamente der physikalischen Wissenschaft zu verstehen, vielleicht auch noch zu vertiefen.‘‘
1877 ging Planck an die Berliner Universität und hörte dort Vorlesungen bei Hermann von Helmholtz und Gustav Kirchhoff. Besonderes Interesse erregten bei ihm die thermodynamischen Schriften von Rudolf Clausius, insbesondere über die zentrale Rolle des zweiten Hauptsatzes der Wärmelehre und über die Entropie – beides sollte sich für seine späteren Entdeckungen als entscheidend erweisen. Im Sommer 1879 verteidigte er in München seine Dissertationsschrift „Über den zweiten Hauptsatz der mechanischen Wärmetheorie‘‘, und bereits ein Jahr später erfolgte die Habilitation. Allerdings stellt Planck später ernüchtert fest, dass die Wirkung dieser Schriften in der wissenschaftlichen Gemeinschaft gleich null war.
Michael Bonitz
- 1Dieser Artikel basiert auf Vorträgen für die Öffentlichkeit, die ich seit 2008 in Schleswig-Holstein, insbesondere im Rahmen der Schleswig-Holsteinischen Universitätsgesellschaft, gehalten habe. Viele Abbildungen sind dem Vortrag entnommen.